Juliaで前処理(データ可視化)
Python
grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6)
grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
grid.add_legend()
Julia
survived_means = @linq train[:, [:Sex, :Embarked, :Survived, :Pclass]] |>
dropmissing(:Embarked) |>
by([:Embarked, :Sex, :Pclass],
Survived_mean = DataFrames.mean(:Survived))
set_default_plot_size(20cm, 10cm)
plot(survived_means, xgroup=:Embarked,
x=:Pclass, y=:Survived_mean,
color=:Sex, Geom.subplot_grid(Geom.line))